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ABSTRACT 

 
One of the significant machining operations is Metal cutting. Amongst, Turning is one of the oldest machining processes. 

Variation during the machining process due to cutting forces, surface roughness, changes, and other disturbances make it 

highly inefficient for perfection, especially in high quality machining operations where product quality specifications are very 

restrictive. Therefore, to assure the quality of machined products, reduce costs and increase machining efficiency, cutting 

parameters must be optimized to minimize various response variables such as cutting forces, surface roughness, etc. for which 

several optimization methodologies are being analyzed. Optimization of the parameters to provide the best solution to 

minimize cutting forces, surface roughness  have been presented using software optimization techniques. This attempt to 

optimize can provide insight into the problems of controlling the finishing of machined surfaces, when the process parameters 

are adjusted to obtain a certain surface finish. Using the optimum combination of these parameters enables minimizing surface 

roughness and determining quality of machined part. Owing to the significant role that turning operations play in today’s 

manufacturing world, there is a significant need to optimize machining parameters for this operation. Accordingly this paper 

describes the development of optimization models and their use of machining parameters using Response Surface 

Methodology (RSM). The main idea of RSM is to use a sequence of designed experiments in an optimal response. 

Keywords:  Response Surface Methodology, Turning, cutting forces, surface roughness. 

 

 

1. INTRODUCTION 

1.1  2024-T351 Aluminum alloy 

The use of light weight materials are  very much essential in the present day Automotive world, hence  the need for study and 

design of machines and its parts using light weight materials such as aluminium, titanium, magnesium and their alloys have 

increased extensively. Aluminium alloys are widely used for demanding structural applications due to good combination of 

formability, corrosion resistance, weldability and mechanical properties. Hence the present work is about machining of 2024-

T351 aluminium alloy at various combinations of process parameters such as speed, feed rate and depth of cut and to 

determine the effect these parameters on surface quality. Thus the aluminium alloy needs to undergo several machining 

operations.  Variation during the machining process due to cutting forces, surface roughness changes and other disturbances 

make it highly inefficient for perfection, especially in high quality machining operations where product quality specifications 

are very restrictive. Therefore, to assure the quality of machining products, reduce costs and increase machining efficiency, 

cutting parameters must be optimized in real-time according to the actual state of the process. Parameters such as cutting 

speed, depth of cut and feed have influence on overall success of machining operation. The constituent elements of 2024-T351 

aluminum alloy and its weight percentage is presented in below. 
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Table 1 The alloy composition of 2024-T351 Aluminium alloy 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Design of experiments 

2024-T351 aluminium alloy is used in this experiment. The material was obtained in the form of cylindrical work 

piece. The experiments were designed by following full factorial design of experiments. Design of experiments is an 

effective approach to optimize the parameters in various manufacturing related process, and one of the best intelligent tool 

for optimization and analyzing the effect of process variable over some specific variable which is an unknown function of 

these process variables. The selection of such points in the design space is commonly called design of experiments (DOE). 

In this work related to turning of 2024-T351 aluminium alloy, the experiments were conducted by considering three main 

influencing process parameters such as Speed, Feed rate and Depth of cut at three different levels namely Low, Medium and 

High.  So according to the selected parameters a three level full factorial design of experiments in single block five center 

points in Box-Benhen were designed and conducted.  The level designation of various process parameters are shown in 

Table 2 and the conditions at which 17 experimental runs were conducted are detailed in Table 3.  

1.3 Box–Behnken design 

Box–Behnken design was chosen for the experimentation in turning of  2024-T351 Aluminium Alloy because it 

proposed suitable quadratic model for three level designs. According to one block of five center points of Box– Behnken 

design (BBD) 17 runs (five center points per block) were carried out. BBDs are response surface designs, specially made to 

require only three levels, coded as −1, 0, and +1.This procedure creates designs with desirable statistical properties but, most 

importantly, with only a fraction of the experiments required for a three-level factorial. Because there are only three levels, 

the quadratic model is appropriate. The Box–Behnken design is an independent quadratic design in that it does not contain 

an embedded factorial or fractional factorial design. In this design, the treatment combinations are at the midpoints of edges 

of the process space and at the center. These designs are rotatable (or near rotatable) and require three levels of each factor. 

The designs have limited capability for orthogonal blocking compared to the central composite designs. The geometry of 

this design suggests a sphere within the process space such that the surface of the sphere protrudes through each face with 

the surface of the sphere tangential to the midpoint of each edge of the space. The 17 runs of experimental data recorded for 

2024-T351 Aluminium Alloy were shown in Table 3. 

 

Component Wt.% 

Al 90.7 -94.7 

Cr Max 0.1 

Cu 3.8 - 4.9 

Fe Max 0.5 

Si Max 0.5 

Ti Max 0.15 

Zn Max 0.25 

Mg 1.2 - 1.8 

Mn 0.3 - 0.9 

Other ,each Max 0.05 

Other,total Max 0.15 
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Table 2 Level designation of process parameters 

 

 

 

 

 

 

 

By taking the above said parameters as input parameters, the parameters evaluated are cutting forces(Fx, Fz) are measured by 

using Kistler dynamometer in Newton and surface roughness (Ra) is measured in surface roughness tester in micro meter. 

Table 3 Experimental output for surface roughness, cutting forces at varying input parameters 

Runs Cutting 

speed 

(m/min) 

Feed 

rate(mm/rev) 

Depth of cut(mm) Cutting forces 

(Fx)N 

Cutting forces 

(Fz)N 

Surface 

roughness(Ra)µm 

1 150 0.05 1.00 22.35 21.07 1.62 

2 100 0.08 1.00 13.13 23.38 1.87 

3 150 0.08 0.63 17.52 15.41 1.39 

4 200 0.10 0.63 19.01 12.76 2.1 

5 150 0.08 0.63 13.26 14.7 1.78 

6 150 0.08 0.63 15.65 17.13 1.56 

7 200 0.05 0.63 13.8 20.92 1.15 

8 150 0.10 0.25 12.38 15.81 2.31 

9 100 0.05 0.63 20.69 18.26 1.59 

10 150 0.05 0.25 14.49 24.15 1.23 

11 200 0.08 0.25 18.46 29.59 1.85 

12 150 0.10 1.00 10.19 14.55 1.5 

13 200 0.08 1.00 12.45 26.69 1.24 

14 100 0.10 0.63 1.83 9.45 1.98 

15 100 0.08 0.25 7.82 25.47 1.82 

16 150 0.08 0.63 14.86 15.7 1.54 

17 150 0.08 0.63 16.64 18.84 1.32 

Parameters Level 1 Level 2 Level 3 

Cutting 

speed(m/min) 100 150 200 

Feed 

rate(mm/rev) 0.05 0.08 0.1 

Depth of 

cut(mm) 0.25 0.63 1 
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2. MATHEMATICAL MODEL FOR AA2024-T351  

The mathematical relationship for correlating of the responses are cutting forces, surface roughness and the considered process 

variables were obtained from the coefficients resulting from the Design expert software output. The regression equations are 

Fx  =  +44.04838-0.21609* speed-698.53333 * feed+43.93000* depth of cut+4.81400 * speed *                            feed-0.15093* 

speed * depth of cut-262.66667 * feed * depth of cut                     →(1) 

Fz = +37.57339 – 0.35224 * speed+ 798.53667* feed - 65.01444*depth of cut+  0.13000*speed*feed- 0.010800* 

speed *depth of cut+48.53333* feed* depth of cut+1.27580E-003*speed2* 6716.80000*feed2+47.90756*depth of cut2   →(2)  

 Ra =  +0.25990-5.20000E-003 * speed+14.70000   * feed+3.39333  *depth of cut+0.11200* speed * feed-8.80000E-

003*speed * depth of cut-32.00000  *feed*depth of cut                 →(3) 

 

3.   RESULTS & DISCUSSION 

Table 4. ANOVA for Response Surface 2FI Model 

Analysis of variance table [Partial sum of squares - Type III] 

 

                                   Sum of                       Mean                        F                    p-value 

Source Squares              df                    Square                  Value                    Prob > F 

 

   

Model                         354.08           6 59.01 17.77 < 0.0001 significant 

A-speed                        51.26 1 51.26 15.43 0.0028 

B-feed                          98.84 1 98.84 29.76 0.0003 

C-depth                          2.84 1 2.84 0.86 0.3766 

AB                             144.84 1 144.84 43.60 < 0.0001 

AC                               32.04 1 32.04 9.64 0.0111 

BC                               24.26 1 24.26 7.30 0.0222 

Residual                       33.22 10 3.32 

Lack of Fit                   22.42 6 3.74 1.39 0.3924              not significant 

Pure Error                    10.79 4 2.70 

Cor Total                   387.29     16 

 

The Model F-value of 17.77 implies the model is significant.  There is only a 0.01% chance that a "Model F-Value" this large 

could occur due to noise. 

 

Values of "Prob > F" less than 0.0500 indicate model terms are significant.   In this case A, B, AB, AC, BC are significant 

model terms. Values greater than 0.1000 indicate the model terms are not significant.   

If there are many insignificant model terms (not counting those required to support hierarchy),  model reduction may improve 

your model. 

 

The "Lack of Fit F-value" of 1.39 implies the Lack of Fit is not significant relative to the pure error. There is a 39.24% chance 

that a "Lack of Fit F-value" this large could occur due to noise.  Non-significant lack of fit is good -- we want the model to fit. 
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Table 5 ANOVA for Response Surface Quadratic Model 

Analysis of variance table [Partial sum of squares - Type III] 

 

                               Sum of                              Mean                    F                         p-value 

Source                     Squares          df              Square                Value                 Prob > F 

 

 

Model                     461.52               9                 51.28                  30.65                < 0.0001  significant 

A-speed                    22.45  1      22.45     13.41    0.0080 

B-feed                    126.64  1    126.64     75.69  <0.0001 

C-depth of cut          10.88  1      10.88       6.50    0.0381 

AB                      0.11  1        0.11     0.063    0.8088 

AC                      0.16  1        0.16     0.098    0.7633 

BC                      0.83  1        0.83       0.49    0.5045 

A2                    42.83  1      42.83     25.60    0.0015 

B2                    74.20  1      74.20                  44.35    0.0003 

C2                  191.10  1    191.10   114.21  <0.0001 

Residual                    11.71  7         1.67 

Lack of Fit                  0.88  3         0.29       0.11    0.9512          notsignificant 

Pure Error                 10.84  4          2.71 

Cor Total                473.23  16 

 

The Model F-value of 30.65 implies the model is significant.  There is only a 0.01% chance that a "Model F-Value" this large 

could occur due to noise. 

Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, B, C, A2, B2, C2 are significant model 

terms. Values greater than 0.1000 indicate the model terms are not significant.If there are many insignificant model terms (not 

counting those required to supporthierarchy),model reduction may improve your model. 

 

 The "Lack of Fit F-value" of 0.11 implies the Lack of Fit is not significant relative to the pure error.  There is a 95.12% chance 

that a "Lack of Fit F-value" this large could occur due to noise.  Non-significant lack of fit is good -- we want the model to fit. 

Table 6. ANOVA for Response Surface 2FI Model 

Analysis of variance table [Partial sum of squares - Type III] 

 

                               Sum of                              Mean                    F                         p-value 

Source                     Squares          df              Square                Value                 Prob > F 

 

 

Model                          1.43              6             0.24                       9.10                     0.0014  significant 

A-speed                       0.11 1 0.11   4.03                  0.0725 

B-feed                         0.66  1 0.66   25.18                  0.0005 

C-depth of cut             0.12  1 0.12   4.57                  0.0582 

AB                     0.078 1 0.078   2.98                  0.1147 

AC                      0.11  1 0.11   4.15                  0.0691 

BC                      0.36  1 0.36   13.71                  0.0041 
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Residual                     0.26  10 0.026 

Lack of Fit                 0.14  6 0.023   0.72                0.6593   notsignificant 

Pure Error                  0.13  4 0.032 

Cor Total                   1.70  16 

 

The Model F-value of 9.10 implies the model is significant.  There is only a 0.14% chance that a "Model F-Value" this large 

could occur due to noise. 

 

Values of "Prob > F" less than 0.0500 indicate model terms are significant.In this case B, BC are significant model terms. Values 

greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those 

required to supporthierarchy),model reduction may improve your model. 

 

The "Lack of Fit F-value" of 0.72 implies the Lack of Fit is not significant relative to the pure error. There is a 65.93% chance 

that a "Lack of Fit F-value" this large could occur due to noise.  Non-significant lack of fit is good – we want the model to fit. 

 

Table 7 

Factor      Name   Level       Low Level     High Level          Std. Dev.        Coding 

  

A             speed 150.00 100.00               200.00                   0.000           Actual 

B             feed  0.075 0.050                 0.100                   0.000           Actual 

C            depth of cut 0.63 0.25                   1.00                   0.000           Actual 

  

Table 8  99% of Population 

 

Response Prediction   Std Dev  S E Mean   95% CI   95% CI     SE Pre       95% PI      95% PI     95% TI             95%  TI 

               low          high                           low              high           low                       high 

 

 

Fx            14.3959        1.82255        0.442033   13.411     15.3808  1.87539  10.2173    18.5745     6.11592           22.6758              

Fz   16.356         1.29354 0.578488     14.9881      17.723      1.417 13.0053    19.7067    9.27202            23.44 

Ra   1.63824      0.162064 0.0393063   1.55066      1.72582   0.166762 1.26667       2.00981    0.901968           2.37454.  

4.   RESPONSE SURFACE METHODOLOGY   

Use of many methods has been reported in the literature to solve optimization problems for machining parameters. These 

methods include various nomograms, graphical methods, performance envelope, linear programming, Lagrangian multipliers, 

geometric programming, dynamic programming, and artificial intelligence. In statistics, response surface methodology (RSM) 

explores the relationships between several explanatory variables and one or more response variables. The method was 

introduced by G. E. P. Box and K. B. Wilson in 1951. The main idea of RSM is to use a set of designed experiments to obtain 

an optimal response. By this technique, the cause and effect relationships between true mean responses and input control 

variables influencing the responses are determined and represented as a two or three dimensional hyper surface.  

RSM enables to (i) determine the factorial levels that will simultaneously satisfy a set of desired specifications. (ii) Determine 

the optimum combination of factors that yield a desired response and describes the response near the optimum. (iii) Determine 

how a specific response is affected by changes in the level of factors over the specified levels of interest. In this paper, work is 



[Vignesh, 1(8): Oct, 2014]  ISSN 2348 – 8034 

 

     (C) Global Journal Of Engineering Science And Researches 

[39-50] 

 

done to develop a mathematical model for correlating the interactive and higher order influences of various turning parameters 

on surface roughness at various locations during the turning phenomena using RSM. 

5.   ANALYSIS OF EXPERIMENTAL  

Studies were carried out to analyze the effect of various process variable on cutting forces, surface roughness for a turning 

operation, based on the equation developed through experimental observations and response surface methodology. Figures below 

show the effect of cutting speed, feed rate, and depth of cut on cutting forces (Fx, Fz), surface roughness . 

3D Graphs for Fx 
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Figure 1 
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Figure 2 
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Figure 3 

3D Graphs for Fz 
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Figure 4 
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Figure 5 
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Figure 6 

3D Graphs for Ra 
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Figure 7 
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Figure 9 

6.   OPTIMIZATION OF PARAMETERS 

 This involves an optimality search model, for the various process variables conditions for maximizing the responses after 

designing of experiments and determination of the mathematical model with best fits. The optimization is done numerically and 

the desirability and response cubes are plotted. The parameters for the turning operations were determined using Response 

Surface Methodology and the optimum condition obtained is listed in Table 6. The optimal levels for turning of 2024-T351 

aluminium alloy in center lathe to obtain minimum cutting forces, surface roughness are possible at a cutting speed of 150 m/min, 

depth of cut of 0.63 mm and feed rate of 0.08 mm/rev. 

Table 9 optimal parameters for the turning operations 
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Figure 10 

 

Number Speed 

(m/min) 

Feed rate 

(mm/rev) 

Depth of 

cut  

(mm) 

Desirability 

1 150 0.08 0.63 1.000 
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7.   CONCLUSION 

By the mathematical modeling results the obtained conclusions can be drawn as follows:  

1.  The mathematical models were developed based on RSM, utilizing the practical data obtained from turning experiments 

conducted on a center lathe turning machine.  

2. 2.  The optimal control variables have been found using one of the new optimization techniques namely Response surface 

Methodology.  

3.  When turning is performed at a cutting speed of 150 m/min, depth of cut of 0.63 mm and feed rate of 0.08 mm/rev predict  

cutting forces can be achieved. 

Hence, this article represents not only the use of RSM for analyzing the cause and effect of process parameters on 

responses, but also on optimization of the process parameters themselves in order to realize optimal responses. 
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